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Tracking the deformation of fiducial markers in the vicinity of living cells embedded in compliant
synthetic or biological gels is a powerful means to study cell mechanics and mechanobiology in three-
dimensional environments. However, current approaches to track and quantify three-dimensional
(3D) fiducial marker displacements remain ad-hoc, can be difficult to implement, and may not
produce reliable results. Herein, we present a compact software package entitled “FM-Track," written
in the popular Python language, to facilitate feature-based particle tracking tailored for 3D cell
micromechanical environment studies. FM-Track contains functions for pre-processing images, running
fiducial marker tracking, and post-processing and visualization. FM-Track can thus aid the study of
cellular mechanics and mechanobiology by providing an extensible software platform to more reliably
extract complex local 3D cell contractile information in transparent compliant gel systems.
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1. Metivation and significance

At present, there is substantial research focused on under-
standing how cells interact mechanically with their local en-
vironment [1-4]. While the field started with cells seeded on
two-dimensional surfaces [5-9], emphasis is now moving to-
wards greater realism through the study of the three-dimensional
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cellular micro-environment, typically using cells embedded in
transparent natural or synthetic gels [10-16]. One major class of
methods for probing cell mechanics involves tracking the motion
of fiducial markers in the vicinity of a given cell [17,18]. For
example, use of 3D Traction Force Microscopy (TFM) has grown in
recent years [10,11,13-15,19]. In TFM, cells and p.m-scale fluores-
cent beads are co-seeded in gels. The observed deformation of the
fluorescent beads in the vicinity of the cell is then used to infer
the local forces that the cell is imposing on its local environment
given known mechanical properties of the gel [10,20]. However,
widespread adoption of TFM and related methods is limited, in
part, because the software required for successful bead tracking is
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not trivial to implement and lacks overall standardization [17,18,
21-26]. This includes not only tracking but also features such as
microscope imaging stage translation correction and robust post-
processing of the resulting displacement data. Such limitations
make both the initial displacement measurement and subsequent
interpretation difficult. Overall, there is a need for accessible soft-
ware to enable cell mechanics research and promote standardized
technique across different laboratories.

To address these issues, we have developed a software pack-
age entitled “FM-Track,” an open source software written entirely
in the popular Python language. While there are multiple exam-
ples of feature based particle tracking algorithms described in
the literature [10,18,27], there are limited available open source
software resources [23]. With FM-Track, we specifically build on
extant methods to introduce an open source particle tracking
software written entirely in the Python language. Important novel
aspects, to the author’s knowledge, are (1) tracking algorithm
improvements such as our procedure for checking different per-
mutations of feature matches and (2) a multivariate adaptive
regression spline (MARS) based translation correction function
that is necessary to overcome the potential microscope hardware
limitations of unintended sample translation. In the following, we
include a description of how FM-Track works in Section 2 and a
minimum working example of running the algorithm presented
in Section 3.

2. Software description

Many open source particle tracking algorithms are designed
for systems with high time resolution, so that the change in
particle positions between images is small [28]. Herein, we focus
exclusively on approaches that use paired images, one initial
image and one final image, with inert fiducial markers (typi-
cally fluorescent beads) and no specific limitations on the dis-
placement magnitude. In this scenario, a successful software im-
plementation must be able to accommodate large deformations
between time frames, but computational efficiency is less crit-
ical given that the algorithm will only have to run once per
image set and will never run in real time. The software writ-
ten to easily accommodate different sets of input parameters.
To operate the software, the user will feed variables (both file
paths and tunable parameters) into the “InputInfo” class. The
file “run_tracking_all_steps.py” is set up such that the
user can run the algorithm on a set of images by calling the
“run_tracking_all_steps()” function once.

2.1. Software architecture

Work flow in FM-Track is broken down into the follow-
ing three steps: (1) pre-processing, (2) tracking, and (3) post-
processing. These functions are defined in three separate files and
are all called from the main function “run_all_track()”. User-
specified input parameters and paths to image files are identified
in a separate class “InputInfo”. The flow chart of FM-Track is
illustrated in Fig. 1.

2.2. Software functionalities

The pre-processing file contains three functions. First, a func-
tion to import the three dimensional image stacks taken with
a confocal microscope in the correct order as a numpy array.
Second, a function to identify the coordinates of the center of
every bead in a given image. Third, a function to identify the
approximate volume, center, surface mesh, and surface mesh
normals of a single cell in a given image. If there are multiple cells

in the image, the function in its current state will only return the
largest cell by volume.

The tracking file contains a main function “track_main-
_call()” to perform bead tracking given a specified first and
second set of input images. If tracking type 1 is specified, the
tracking function will run the tracking algorithm once. If tracking
type 2 is specified, the tracking function will run the tracking
algorithm, run a translation correction algorithm, and then run
the tracking function again. The translation correction algorithm
will correct for any translation that can be described as a function
of z—position (Fig. 1). For clarity, a general outline of the particle
matching algorithm is also provided (Fig. 2).

Briefly, a feature vector is computed for each particle. The
feature vector contains the relative position of each bead and a
fixed number of neighbors (the default selection is 5 neighbors).
Each particle’s feature vector will then be compared to a fixed
number of particles and their feature vectors in the other image
configuration (the default selection is 15 comparison particles).
The comparison particles are the particles closest to the original
particle measured by center to center distance, with the equa-
tion for comparing feature vectors is given in Fig. 2. Essentially,
the distance between each entry of the two feature vectors is
computed. We also compare the permutations of the feature
vector and select the lowest score among all of the possible
permutations. Then, the candidate particle with the lowest score
is considered the best match. If there is a “clash” the pair with
the lowest score is selected and the other pair is assigned its next
best match. We perform the clash checking procedure iteratively.
This algorithm is run from configuration 1 to configuration 2, and
then from configuration 2 to configuration 1. Matches that are
not identical in both directions are discarded. This approach is an
adaptation of other algorithms proposed in the literature [10,23].
We note that future users of FM-Track can take advantage of
our modular software design to implement an alternative fea-
ture comparison equation. Once the tracking step is complete,
the initial coordinates and displacement vector are recorded for
every bead that was successfully matched. The tracking file also
contains a similar function called “track_no_cell()” that is
suitable for running the algorithm when there is no cell present.

The post-processing functions are included for easy visualiza-
tion of the bead tracking results. Several different types of plots
of the raw bead displacements are available (see Figs. 3 and 4).
Furthermore, the post processing step also includes a function to
interpolate the raw bead displacements using Gaussian Process
Regression (GPR) “create_GP_model” and a function to produce
filled color plots of the interpolations “plot_gp_model”. Further
information on Gaussian Process Regression is available in the
literature [29,30].

3. Illustrative example

To illustrate the functionality of FM-Track, we present an ex-
ample of a porcine aortic valve interstitial cell (AVIC) embedded
in a PEG hydrogel containing suspended 0.5 wm microspheres
serving as fiducial markers [31]. Details of the methodology re-
garding AVIC encapsulation within a PEG hydrogel have been
previously presented [31]. We note that the microsphere diam-
eter was chosen to be large enough such that beads can easily
be registered but small enough such that a large number of
beads can be included in the gel without mutually interfering or
causing cell death. AVICS were imaged under normal conditions
and imaged after it is treated with Cytochalasin-D, a chemi-
cal that inhibits actin polymerization and therefore shuts down
the contractile machinery of the cell. By comparing the treated
cell to the normal (untreated) cell, we are able visualize how
the cell actively deforms the surrounding gel. A brief overview
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Fig. 1. Basic flow chart of FM-Track.
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Fig. 2. Schematic of the algorithm for feature based bead matching. The ,P, permutations of features for each bead within a defined horizon are compared, and
the matched bead is the bead with the best score. Clashes are resolved by assigning the match to the pair with the better score. Two-way tracking means that the
match must hold when the algorithm is run from initial configuration to final configuration and from the final configuration to the initial configuration.

of the experimental protocol used to generate these images is
included in Appendix A. In Appendix B, we also included two
additional examples with synthetic data derived from a finite
element model of a block undergoing uniaxial extension. We note
that the synthetic data is useful for evaluating the performance of
our tracking algorithm. On synthetic data, our tracking algorithm
performs quite well on the relevant bead densities up to realistic
expected levels of deformation.

To run the code, first install FM-Track using the installation
instructions specified in the “README . md” file located in the “FM-
Track” repository. Next, move the sample data folder and the
“test.py” script to the same directory. An example data set and
the “test.py” script are both found in the examples folder of the
repository. Finally, change the name of the “root_directory”
variable at the top of “test.py” and run it using either a Python
IDE or the terminal. Further instructions on how to run the script
are found in the “README.md" file.

To implement the code on a new data set, it will be necessary
to modify the following variables:

e “root_directory”: used to specify the path to the data
folder

“filenames_cell”: used to specify the path to all cell files
(the images must be sequentially numbered, with 4 digits
padded by zeros)

“filenames_beads”: used to specify the path to all bead
files

“savefnames”: used to specify the unique filename that
segmented cell and bead files will be saved as
“tracking_pairs”: used to specify the tracking pairs,
(these must match the unique filenames specified in
“savefnames”)

“fov_dims”: used to specify the microscope field of view
dimensions

If necessary, changes can readily be made to: the specified fluo-
rescent color channels in the RGB input images “cell_channel”
and “bead_channel”; the threshold for segmenting the cell
image “cell_thresh”; the tracking parameters “num_feat”,
“num_nearest”, “buffer_cell_tracking”, and “track-
_type”; the translation correction parameters “buffer_cell-
_translation”; and the type(s) of figure to save post processed
results as “figtype_list”.

root_directory = ’/Users/<username>/Desktop/data’
# section (1)
# import the necessary modules to use FM-Track

from fmtrack.inputinfo import InputInfo
import numpy as np

# section (2)
# initialize all variables that will be passed into InputlInfo

filenames_cell [\
’CytoD/Cell/Gel 2 CytoDjs.tif’,\
’Endol/Cell/Gel 2 Endol%s.tif’,\
’Normal/Cell/Gel 2 Normals.tif’]
filenames_beads [\
’CytoD/Beads/Gel 2 CytoD%s.tif’,\
’Endol/Beads/Gel 2 EndolY%s.tif’,\
’Normal/Beads/Gel 2 NormalYs.tif’]

savefnames [\
’CytoDSave’,\
’EndoiSave’,\
’NormalSave’]

[\
’EndolSave’],\
’NormalSave’],\
’NormalSave’]]

tracking_pairs =
[’CytoDSave’,
[’CytoDSave’,
[’EndolSave’,

fov_dims = np.array([149.95, 149.95, 140.0])
# section (3)
# create an InputInfo object

info InputInfo(root_directory)
info.set_inputs(filenames_cell, filenames_beads, savefnames,
tracking_pairs, fov_dims)

# section (4)

# additional, optional steps of the script
41
42 #out_folder_cell = ’Gel_cell_coords’
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Fig. 3. (a) 3D image stack of an AVIC (red), wherein cytochalsin D has been applied to suppress the cell’s contractile machinery, surrounded by fluorescent beads
(green) visualized with Image] software; (b) 3D image stack of a cell in a normal state surrounded by fluorescent beads visualized with Image] software; (c)
superimposed image of both cells with bead displacements illustrated visualized with ParaView software.
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Fig. 4. Summary of the results from FM-Track. Upper left: distribution of ncj - Nyecor Where ne is the outward facing unit normal at the closest point on the cell
surface and nyeqor is the unit normal vector direction of bead motion; Upper right: projections of bead displacement through plane slices, where the gray outline is
the cell in the initial configuration, the black outline is the cell in the final configuration, and bead displacements are color coded by direction compared to the cell
surface; Lower left: comparison of bead displacements to their immediate neighbors (beads with high scores may be spurious); Lower center: bead displacement
magnitude with respect to distance from cell surface; Lower right: three-dimensional plots of the cell in each configuration.

#out_folder_beads = ’Gel_bead_center_coords’
#out_folder = ’Post_proc_summary’
#info.set_out_folder_cell (out_folder_cell)
#info.set_out_folder_beads (out_folder_beads)
#info.set_out_folder (out_folder)

#info.cell_channel

#info.bead_channel

#info.cell_thresh = 1.0

#info.num_feat = 5

#info.num_nearest = 15

#info.buffer_cell_tracking = 0

#info.track_type = 2 # type 1 will NOT perform translation
correction, type 2 will

#info.buffer_cell_translation = 30

#info.figtype_list = [’.png’]

#info.plot_type = 6.0

#info.run_GP = False

#info.use_corrected_cell = True

#info.should_plot = True # toggles 3D plotting using PyVista

#info.print_progress = True # toggles all printing in algorithm

0 #CellBrite Red
1 #Green fluorescent beads

# section (5)
# run all steps of the program

info‘run_tracking_all_steps(True,True,True)

Listing 1: Example implementation file.

Once the parameters are specified in test.py, we run the
script. This file is shown in Listing 1. The script calls the FM-
Track function “run_tracking_all_steps ()", which runs the
software on the specified data. The components of this function
are as follows:

e Pre-process: This step takes the two-channel image stacks
and outputs the information needed to run the tracking
algorithm. The key steps are getting the bead center po-
sitions “get_bead_centers()”, and getting the cell sur-
face meshes “get_cell_surface()”. The bead centers are
identified by first applying a threshold to the fluorescent
bead channel and then finding the center of volume of each
connected voxel group in the binary image. The cell mesh
is identified by first applying a threshold to binarize the
fluorescent cell channel and then using the marching cubes
algorithm to identify the surface mesh. A Gaussian filter is
applied to both image channels before processing [32].
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e Track: This step runs the tracking step “track_main
_call()”, where the result of running this step are text
files that contain the x, y, and z coordinates of each bead
in the first configuration, and text files that contain the
displacement of each bead u, v, and w that show how it
moves from the first configuration to the second configura-
tion. The fundamental components of the tracking algorithm
are explained in Section 2.2.

e Post-process: This step plots the raw data “call_plot
_main()”, with an option to generate a Gaussian Process
Regression (GPR) model to interpolate bead displacements
“create_GP_model()”, and subsequently plot the GPR
model “plot_gp_model()” (note: generating the Gaussian
Process model may be slow and the saved model may take
up a large amount of file space). An example of a summary
sheet generated by the post processing script is shown in
Fig. 4.

The results of running FM-Track (pre-processing, tracking, and
post-processing) are shown in Figs. 3 and 4. Fig. 3a and b show
the initial paired image stacks, visualized in Image], and Fig. 3c
shows a final three-dimensional plot in ParaView that shows
how the fluorescent beads move between the two images. The
color scheme in Fig. 3c is chosen such that beads moving to-
wards the cell surface are yellow, while beads moving away
from the cell surface are blue. Fig. 4 shows an example of an
automatically generated post-processing summary sheet created
with matplotlib [33]. Notably, the summary sheet shows bead
movement in planar slices through the cell center, magnitude of
bead displacement as a function of distance from the cell surface,
and an illustration of the cell mesh in both the initial and final
configuration.

4. Impact and conclusions

The main benefit of FM-Track is that it provides an open
source and simple to implement feature based bead tracking
algorithm in the Python framework. Users have the option to
implement the code directly as specified in the working example,
use it with altered input parameters, or build on the functions and
framework presented here in a manner that is entirely specific to
their own needs. Furthermore, the modular nature of this code
allows it to be adapted to accommodate alternate types of fiducial
markers, even potentially cell centers or nuclei [34,35]. Important
novel aspects of our code that are, to the author’s knowledge, not
found elsewhere in the literature include: (1) minor aspects of
the tracking algorithm (2) the MARS based translation correction
function, and (3) the open source Python based framework. Our
software is simple to use and modify, even for researchers with
limited programming experience. Looking forward, we anticipate
that FM-Track will enable research in Traction Force Microscopy
and related techniques.

5. Further information

FM-Track software can be accessed at https://github.com/
elejeune11/FM-Track. The GitHub repository contains the most
up to date information on installing, running, and adapting FM-
Track.
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Appendix A. Experimental protocol used to generate the data
used in Section 3

A.1. Sample preparation

Aortic heart valve leaflets were dissected from porcine hearts
obtained from a local abattoir. Aortic valve interstitial cells (AVICs)
were extracted from the leaflets via previously published meth-
ods [36]. AVICs were seeded at a density of 500,000 cells/mL along
with 0.5 pm yellow-green fluorescent polystyrene microbeads
(Polysciences) suspended at a density of 3 x 10° beads/mL within
peptide-modified, poly (ethylene glycol) hydrogels comprised of
MMP degradable peptide crosslinks (Bachem), CRGDS adhesive
peptides (Bachem), 8-arm 40 kDa PEG-norbornene (Jenkem),
lithium phenyl- 2, 4, 6 - trimethylbenzophosphinate (LAP) pho-
toinitiator (Sigma-aldrich), and PBS (Sigma-aldrich). The solution
was pipetted into a petri dish with a 12 mm glass insert (Fisher
Scientific) and polymerized underneath UV light (365 nm, 2.5
mW/cm?) for 3 min. After that, the hydrogel construct was
incubated at standard conditions in growth media for 72 h before
any experimentation was performed.

A.2. 3D traction force microscopy experiment

Image stacks (150 x 150 x 140 pwm at 0.8 wm z-spacing) of
a single AVIC and the immediately surrounding fluorescent mi-
crobeads were captured using a Zeiss LSM 710 inverted confocal
microscope with a 63x, 1.2 numerical aperture water-immersion
objective lens (Zeiss). Two total image stacks were taken for every
cell under normal and non-contractile conditions. For the normal
case, the sample was incubated for 40 min within Tryode’s Salt
Solution (TSS, Sigma Aldrich) before the first image stack was ac-
quired. After that, a non-contractile state was induced by adding
a stock solution of Cytochalsin D (dissolved in DMSO, Sigma
Aldrich) to achieve a final concentration of 4 wM. A second image
stack of the same FOV was acquired after 40 min of incubation.

Appendix B. Testing FM-track performance on synthetic data

B.1. Note on synthetic data

Synthetic data is generated by randomly identifying points
in the reference configuration of finite element simulations. The
initial fiducial marker locations are the randomly identified points
in the reference configuration, and the final fiducial marker loca-
tions are the randomly identified points in the current configura-
tion after some boundary conditions or loading has been applied
in the finite element setting. Notably, we shuffle the order of the
fiducial markers in the final configuration in our synthetic data
set.
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FM-Track performance on this synthetic data set.

B.2. Performance on synthetic data

Here we show the performance of our tracking algorithm on a
synthetic data set. Fig. A.1a shows the finite element simulation
used to generate the synthetic data, and Fig. A.1b shows the
method for adjusting the synthetic data set to contain noise. In
Fig. A.1c, we show the performance of FM-Track at two different
marker densities, and on a data set with progressively higher
levels of random perturbation. Notably, FM-Track performs quite
well on block stretch up to 1.10, and with small random pertur-
bations, and when it fails it tends to fail by not matching beads
rather than by reporting incorrect matches.
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